ХИМИЧЕСКИЙ СОСТАВ БАЗАЛЬТОВЫХ ГОРНЫХ ПОРОД КЫЗЫЛ- КИЙСКОГО МЕСТОРОЖДЕНИЯ КЫРГЫЗСКОЙ РЕСПУБЛИКИ.

Ташполотов Ысламидин, д.ф.-м..н., профессор, Физико-Технический факультет Ошский государственный университет Ош, Кыргызстан e-mail: itashpolotov@mail.ru

Маматов Элбек Умаржанович, инженер-программист отдела информационно-технического обеспечения Ошский Государственный университет Ош, Кыргызстан

e-mail: mamatov.elbek@list.ru

Аннотация. В работе рассмотрены химико - минералогический состав сырья, и микроскопическое строение кристаллов базальтовых пород Кызыл-Кийского месторождения КР. Описано рельефное расположение местностей базальтовых горных пород. Определены силикатные и глиноземистые модули базальтовых пород Кызыл-Кийского месторождения с целью использования их в строительной и электротехнической отраслях КР. Установлено, что в исследуемом базальте имеются также ценные химические элементы: индий, титан и скандий в достаточном процентом содержании.

Ключевые слова: Кристаллы базальтовых пород, каменная вата, фибра, цветовая гамма, базальтовое волокно, оксиды химических элементов, силикатные и глиноземистые модули, химические ценные компоненты.

CHEMICAL COMPOSITION OF BASALT ROCKS OF THE KYZYL-KIY DEPOSIT OF THE KYRGYZ REPUBLIC.

Tashpolotov Yslamidin d.t.s., professor, Physics and technology faculty Osh State University, Osh, Kyrgyzstan e-mail: itashpolotov@mail.ru

> Mamatov Elbek Umarzhanovich IT software engineer Osh State University, Osh, Kyrgyzstan e-mail: mamatov.elbek@list.ru

Abstract. The paper considers the chemical and mineralogical composition of raw materials, and the microscopic structure of crystals of basalt rocks of the Kyzyl-Kiy deposit of the Kyrgyz Republic. The relief location of basalt rock localities is described. Silicate and alumina modules of basalt rocks of the Kyzyl-Kiy deposit have been determined for the purpose of using them in the construction and electrical industries of the Kyrgyz Republic. It was found that the studied basalt also contains valuable chemical elements: indium, titanium and scandium in a sufficient percentage.

Key words: Crystals of basalt rocks, rock wool, fiber, color scheme, basalt fiber, oxides of chemical elements, silicate and alumina modules, chemical valuable components.

ВВЕДЕНИЕ

В последние годы перед наукой и технологией встал вопрос найти такие материалы, которые позволили бы решить проблемы сбережения энергии, снижение использование металла, и защита окружающей среды. К таким материалам можно отнести базальтовые горные породы и изделия из них.

Базальт – это камень вулканического происхождения образованная в виде базальтовых лав. Химическая минералогия базальта рассматривается как природный камень, относящийся к эффузивным породам камней схожим с такими породами как габбро.

Базальт применяется в качестве строительного, облицовочного, защитного материала, а также в качестве сырья для каменного литья [1].

Добавление базальтовой фибры способствует к повышению прочностных качеств бетонных изделий в несколько раз [2]. Арматура из базальтопластика отличается высокой адгезией с бетоном, а также превосходит стальную арматуру по модулю упругости [3]. Например, применение 1 кг базальтопластиковой арматуры заменяет 9.6 кг металла [4].

Также применяют базальтовую породу для изготовления теплоизоляционного материала — каменной ваты, или базальтового волокна. Известно [5, 6], что волокна на основе базальтовых пород обладают высокими

прочностными характеристиками, химической и термической стойкостью. Поэтому базальтовые непрерывные волокна обеспечивают требуемые характеристики и качество армирующих, и композиционных материалов для строительства, в том числе дорожного строительства.

Микроскопическое исследование.

В данной научной работе был использован цифровой USB-микроскоп DigiMicro с кратностью увеличения 500х, высококачественной цифровой камерой, изображение в которую попадает через несколько линз, с выводом изображения на компьютер или проектор. Камера имеет 2 мегапикселя разрешения, и максимальное 500 кратное увеличение обеспечивает четкое изображения даже наименьших деталей, что открывает широкую сферу применение микроскопа в обучении и исследовании.

Под микроскопом были рассмотрены и изучены образцы базальтовых горных пород Кыргызской Республики месторождения Кызыл-Кия.

Рис 1. Микрофотографии поверхностей базальтовых горных пород Кызыл-Кийского месторождения KP, с кратностью увеличения 200x-280x.

Минералогию базальтовых горных пород месторождения Кызыл-Кия можно рассматривать как эффузивным, похожим на габбро природного происхождения [1]. Цветовая гамма базальтовых горных пород довольно широка, но имеет отличительный черный, темный, темно-серый, и зеленоватожелтые оттенки.

Из рис.1. а, б, в можно заметить структуру базальтовых горных пород. Из данного рисунка видно, что структура базальта рассматривается как

скрытокристаллическая (рис.1. а), тонкозернистая и порфировая, в некоторых случаях стекловатая.

В порфировых местностях скрытокристаллической массы можно заметить зеленовато-жёлтые кристаллы оливина (Рис.2). Текстура базальтовых горных пород пористая, массивная и плотная. Излом неровный, и шероховатый на ощупь.

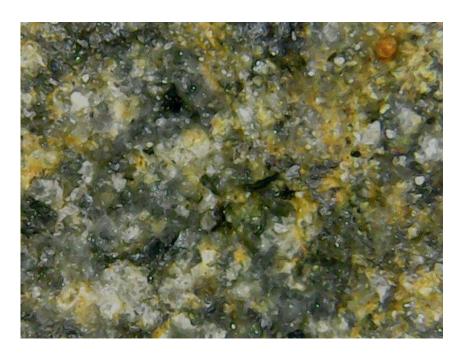


Рис. 2. Образцы базальтовых горных пород под микроскопом.

Согласно [7] удельный вес базальтовых горных пород Кызыл-Кия составляет 2,6-3,11 г/см³. Твердость по шкале Мооса от 5-7. Температура плавления $1100-1450^{0}$ С. Прочность на сжатие горной породы достигает величины 400 Мпа.

Отличительными признаки базальта являются плотное, тонкозернистое строение, неровный излом, темная, большей частью черная окраска, большая плотность. Минеральный состав камня из разных месторождений может значительно отличаться друг от друга.

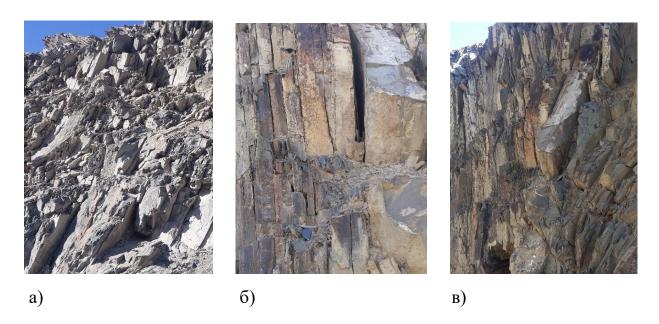


Рис.3 Месторождения базальтовых горных пород в Кызыл-Кия, Кыргызская Республика.

Для базальтовых пород характерна столбчатая отдельность, Рис. 3. а, б, в, Она, по-видимому, возникала вследствие неравномерного остывания породы в результате быстрого охлаждения лавы на поверхности земли.

В каждой из стран добывают разные виды базальтовых горных пород, которые используются в различных сферах нашей жизни. В Кыргызской Республике базальтовые месторождения встречаются во всех регионах страны и также занимают тысячи квадратных километров [8].

Определение химического состава базальтовых пород.

Химический состав базальтовых горных пород подразделяются на несколько групп. Это сложные вещества (оксиды), и группы по таблице Менделеева. В настоящей работе химический состав базальта определена с помощью спектроскопического анализа, результаты которых приведены в нижеследующих таблицах.

Химический состав базальтовых пород различных месторождений

1. Сложные вещества (оксиды)

	Химический элемент,	Название элемента	Пр	Процентное содержание базальта различных месторождений					
	соединение		Кызыл-	Сулуу-	Талды-	Кашка-	Узбекистан,	Украина,	Грузия,
			Кия	Терек	Булак	Суу	Худжант	Бересто-	Марне-
								вецкое	ульское
1	Al_2O_3	Оксид	15	14.80	13.98	15.72	16.33	13.3	16.65
		алюминия							
2	CaO	Оксид	9	8.33	9.49	7.28	10.61	9.8	8.35
		кальция							
3	MgO	Оксид	5	6.33	5.32	5.14	6.72	6.41	6.0
		магния							
4	Na ₂ O	Оксид	3	5.52	4.55	4.41	4,52	2.44	5,7
		натрия							
5	Fe_2O_3	Оксид	4	11.57	11.57	6.73	5.26	3.29	4.97
		железа							
6	SiO_2	Диоксид	30	44	48.27	48.85	43.61	49.5	50.3
		кремния							

Таблица 2

2. Щелочные металлы (1 группа по таблице Менделеева)

No	Химический	Название элемента	Процентное содержание
	элемент		
1	Li	литий	4*10 ⁻³
2	CU	медь	12*10-3
3	Ag	серебро	1*10-1

Таблица 3

3. Щелочноземельные металлы (2 группа по таб. Менделеева)

N₂	Химический	Название элемента	Процентное содержание
	элемент		
1	Be	бериллий	2*10-4
2	Sr	стронций	3*10-2
3	Ba	барий	1,2*10-2

Таблица 4

4. Элементы 3 группы таблицы Менделеева

№	Химический элемент	Название элемента	Процентное содержание
1	In	индий	2*10-2
2	Ga	галлий	9*10 ⁻³

Таблица 5

5. Элементы 4 группы таблицы Менделеева

No	Химический	Название элемента	Процентное содержание
	элемент		
1	Ge	германий	0,3*10 ⁻³
2	Ti	титан	1,5
3	Zr	цирконий	13,5*10 ⁻³
4	Sn	олово	2*10-4
5	Pb	свинец	0,7*10 ⁻³

Таблица 6

6. Элементы 5 группы по таблицы Менделеева

	Химический	Название элемента	Процентное содержание
	элемент		
1	P	р-блок (фосфор)	7*10-2
2	Nb	ниобий	1,2*10 ⁻³
3	Sb	сурьма	1-3*10 ⁻³
4	V	ванадий	3*10-2

Таблица 7

7. Элементы 6 группы таблицы Менделеева

	Химический	Название элемента	Процентное содержание
	элемент		
1	Cr	хром	4*10-2
2	Mo	молибден	3*10-4

8. Элементы 7 группы таблицы Менделеева

	Химический	Название элемента	Процентное содержание
	элемент		
1	Mn	марганец	12 *10-2

Таблица 9

9. Элементы 8 группы таблицы Менделеева

	Химический	Название элемента	Процентное содержание
	элемент		
1	Ni	никель	13,5*10 ⁻³
2	СО	кобальт	10,5*10 ⁻³

Таблица 10

10. Редкоземельный химический элемент

	Химический элемент	Название элемента	Процентное содержание
1	Sc	скандий	1,2*10 ⁻³

Из полученных данных, представленной в таблице 1 видно, что химический состав базальтовых пород Кызыл-Кии заметно отличается по процентным содержаниям оксидов железа и диоксида кремния [8, 9, 10], по сравнению базальтовых пород других месторождений в Кыргызской Республике (Кызыл-Кия, Сулуу-Терек, Талды-Булак, Кашка-Суу,), а также в республиках Узбекистан, Украина и Грузия.

Из таблицы 1 видно, что процентное содержание диоксида кремния в базальтовых горных породах составляет от 30% до 50.3%. Такое содержание диоксида кремния в базальте может объяснить его чрезвычайную устойчивость к воздействию любых агрессивных сред.

Содержание оксида железа в составе различных базальтовых горных пород, колеблется от 4% до 11.57%. Исходя из этих данных, можно утверждать, что оксид железа влияет на прочность и твёрдость базальтовых пород, и на изделия из них.

На основе изучения литературных данных, рассмотрим влияния процентного содержания оксидов (SiO_2 , Fe_2O_3 , Al_2O_3) на механические характеристики базальтовых пород, на основе определения силикатного (SM) и глиноземного модуля (TM).

Согласно [14] SM и TM определются следующим образом:

1. Силикатный модуль (SM)

$$SM = \frac{SiO2}{Al2O3 + Fe2O3}$$

Значения силикатного модуля, пригодных цементной ДЛЯ промышленности обычно пределах 1.9–3.2. Наиболее находится благоприятные значения силикатного модуля расположены в интервале 2.2 – 2.6. С ростом силикатного модуля ухудшается способность смеси к обжигу при снижении содержания жидкой фазы. Кроме того, рост силикатного модуля является причиной замедления схватывания и твердения готовой базальтовой смеси. При уменьшении силикатного модуля возрастает содержание жидкой фазы; это обуславливает хорошую обжигаемость смеси.

Значение силикатного модуля базальтовых горных пород месторождения Кызыл-Кия в соответствии с таблицей 1: $Al_2O_3 = 15$, $Fe_2O_3 = 4$, $SiO_2 = 30$, тогда

$$SM = \frac{30}{15+4} = 1,57.$$

Т.е.силикатный модуль базальтовых горных пород Кызыл-Кия составляет 1.57.

2. Глиноземистый модуль (ТМ).

Глиноземистый модуль (ТМ) характеризует смесь с помощью массового отношения глинозема к оксиду железа:

$$TM = \frac{Al2O3}{Fe2O3}$$

Обычно глиноземистый модуль находится в пределах 1.5-2.5. Известно, что высокий глиноземистый модуль при низком силикатном модуле (SM = 1.57) приводит к получению смеси (раствора) при высокой температуре быстросхватывающегося расплава.

Значение глиноземистого модуля базальтовых горных пород Кызыл-Кия при $Al_2O_3 = 15$, $Fe_2O_3 = 4$ будет равно:

$$TM = \frac{15}{4} = 3.75.$$

Глиноземистый модуль базальтовых горных пород Кызыл-Кия составляет 3.75

Полученные данные по силикатному и глиноземистому модулям для базальтовых пород Кызыл-Кийского месторождения позволяет предположить, что Кызыл-Кийские базальтовые породы можно использовать для создания различных промышленных изделий, пригодные в строительной, электротехнической и других отраслях народного хозяйства.

Наряду с оксидами в базальтовой породе имеются также ценные компоненты, такие как: индий, титан, скандий и др.

1. In (индий) — элемент третьей группы химических элементов Менделеева [13]. Относится к группе легких металлов. Мировое потребление индия быстро растет, и в 2005 году эта отметка достигла 850 тонн. Индий применяется в разных отраслях науки и технологии, но важной областью применения является техника высокого вакуума, где он используется при

герметизации космических аппаратов и мощных ускорителей элементарных частиц.

Из таблицы 4 видно, что индий имеютя также и в горных породах базальта месторождения Кызыл-Кия, Кыргызской Республики. Процентное содержание индия в базальтовых горных породах Кызыл-Кии составлянет в объеме $2*10^{-2}$ %.

- 2. Ті (титан) титан отличается высокой прочностью, и коррозионной стойкостью, при сравнительно небольшой массе, что делает его использование незаменимым, где требуются хорошие механические свойства изделии с учетом их массы [13]. Титан находится на 10-м месте по распространённости в природе. Содержание титана в земной коре составляет 0,57 % по массе. Больше всего титан встречается в основных породах так называемой «базальтовой оболочки» (0,9%), меньше в породах «гранитной оболочки» (0,23%). Подтверждением тому может послужить данные из Таблицы 5, где указано процентное содержание титана в базальтовых горных породах Кызыл-Кии составляет 1.5%.
- 3. *Sc (скандий)* химический элемент 3-й группы системы химических элементов Менделеев. Лёгкий, редкоземельный металл серебристого цвета с характерным жёлтым отливом. Среднее содержание скандия в земной коре 10 г/т [11, 12]. Последние пять лет цены на металлический скандий на мировом рынке колеблются от 12 до 20 тыс. долларов за один кг. Главным по объёму применением скандия является везде, где требуется высокопрочные материалы. Например, предел прочности на разрыв у чистого скандия около 400 Мпа (40 кг/мм), у титана, например, 250—350 Мпа.

Скандий используется для получения сверхтвёрдых материалов. Так, например, легирование карбида титана карбидом скандия весьма резко поднимает микротвёрдость (в 2 раза), что делает этот новый материал четвёртым по твёрдости после алмаза. А процентное содержание скандия в базальтовых горных породах Кызыл-Кии составляет 1,2*10⁻³%.

Таким образом, исследованные базальтовые породы Кызыл-Кийского месторождения могут быть использованы в различных отраслях народного хозяйства (строительной, электротехнической и др.) для получения различных материалов и изделий на его основе, благодаря отличительному химическому его составу. Вместе с тем ценные компоненты, имеющиеся в базальтовой породе, можно получить для использования их в качестве наполнителя при изготовлении композитных материалов с различными эксплуатационными свойствами.

Литература:

- 1. Габбро-базальтовое сырье для производства минерального волокна. [Текст] / Под ред. Э.А. Раскиной, А.Н. Земцова // Промышленность строительных материалов. 2003. Сер. 6. Вып. 1-2. 123 С.
- 2. Деревянко В.Н. Стойкость базальтового волокна в различных средах. [Текст]/ Саламаха Л.В., Кушнир Е.Г., Щудро Е.С., и др. «Технология и материалы».
- 3. С. А. Милованов, В. Б. Маркин. Применение базальтовых волокон для создания соединений «металл-композит». Раздел 3. Металлургия и материаловедение. Автореферат.
- 4. Ф.Н. Рабинович. О свойствах цементного камня, армированного ориентированными волокнами // Бетон и железобетон, 1976, №10, С. 20 23.
- 5. А.В. Кнотько, В.И. Путляев, А.В. Гаршев, Е.А. Пустовгар. К вопросу о коррозионной стойкости теплоизоляционных материалов на основе базальтовых волокон. Кровельные и изоляционные материалы, 2007, N6, С. 52-55.
- 6. А. В. Кнотько, А. В. Гаршев, И. Б. Давыдова, В. И. Путляев, В. К. Иванов, Ю. Д. Третьяков. Химические процессы при термообработке базальтового волокна. Коррозия: материалы, защита, 2007, №3, С. 37-42.
- 7. Интернет-ресурс. Режим доступа: https://ru.wikipedia.org/wiki/Столбчатая
 oтдельность
- 8. Атырова Р.С. Разработка технологии керамических материалов и изделий с использованием местного базальта [Текст]: канд. техн. наук. 01.04.07/ Р.С. Атырова. Ош, 2015. 142 с.
- 9. Сопубеков Н.А. Экспериментально-теоретические основы получения композитов на основе алевролита [Текст]: канд. техн. наук. 01.04.07/ Н.А Сопубеков. Бишкек, 2015. 145 с.

- 10. А. А. Ахмадиева, Р. Г. Мубараков. Текст: электронный // Физика. Технологии. Инновации: сборник статей VIII Международной молодежной научной конференции (Екатеринбург, 17–21 мая 2021 г.). Екатеринбург: УрФУ, 2021. С. 365-373.
- 11. Интернет-ресурс. Режим доступа: https://www.booksite.ru/fulltext/1/001/008/102/770.htm
- 12. Интернет-ресурс. Режим доступа: https://hij.ru/read/6358/
- 13. Интернет-ресурс. Режим доступа: http://www.himsnabspb.ru/article/ps/in/
- 14. В. Дуда. Цемент/Пер. с нем. Е.Ш. Фельдмана; под ред. Б. Э. Юдовича. М.: Стройиздат, 1981. 464 С.